Statistika untuk Quantifying Uncertainty dalam Reserve Estimation
Penerapan probabilitas dan statistika dalam mengestimasi cadangan migas dengan confidence intervals.
Mengapa Statistika Penting dalam Migas?
Industri migas penuh dengan uncertainty:
- Reservoir properties (porosity, permeability, saturation)
- Volumetric calculations (area, thickness)
- Recovery factors
- Economic parameters (oil price, costs)
Statistika membantu kita:
- Quantify uncertainty
- Make probabilistic forecasts
- Communicate risk
- Support decision-making
Konsep Dasar Statistika
1. Probability Distribution
Normal Distribution: Cocok untuk parameters yang symmetric around mean:
Lognormal Distribution: Cocok untuk parameters yang always positive (porosity, permeability):
Triangular Distribution: Simple distribution dengan min, most likely, max values.
2. Measures of Central Tendency
- Mean (μ): Average value
- Median: Middle value (50th percentile)
- Mode: Most frequent value
3. Measures of Dispersion
- Standard Deviation (σ): Spread of data
- Variance (σ²): Square of standard deviation
- Coefficient of Variation (CV): σ/μ (normalized measure)
Reserve Estimation dengan Probabilistic Method
Deterministic vs Probabilistic
Deterministic:
- Single value estimate
- Uses "best estimate" parameters
- No uncertainty quantification
Probabilistic:
- Range of possible values
- Uses probability distributions
- Quantifies uncertainty with P10, P50, P90
Tiga Metode Estimasi
P90 (Proven/1P):
- 90% probability reserves ≥ this value
- Conservative estimate
- Low risk
P50 (Proven + Probable/2P):
- 50% probability reserves ≥ this value
- Best estimate
- Medium risk
P10 (Proven + Probable + Possible/3P):
- 10% probability reserves ≥ this value
- Optimistic estimate
- High risk
Volumetric Equation
Original Oil in Place (OOIP):
Recoverable Reserves:
Di mana:
- A = Area (acres)
- h = Net pay thickness (ft)
- φ = Porosity (fraction)
- S_w = Water saturation (fraction)
- B_o = Formation volume factor (rb/stb)
- RF = Recovery factor (fraction)
Monte Carlo Simulation
Konsep
Monte Carlo adalah metode untuk:
- Define probability distributions untuk input parameters
- Random sampling dari distributions
- Calculate output (reserves) untuk each sample
- Analyze distribution of results
Step-by-Step Process
Step 1: Define Input Distributions
Example untuk reservoir X:
| Parameter | Min | Most Likely | Max | Distribution |
|---|---|---|---|---|
| Area (acres) | 800 | 1000 | 1200 | Triangular |
| Thickness (ft) | 25 | 35 | 50 | Lognormal |
| Porosity | 0.15 | 0.20 | 0.25 | Normal |
| Sw | 0.20 | 0.25 | 0.35 | Triangular |
| Bo | 1.15 | 1.20 | 1.25 | Normal |
| RF | 0.25 | 0.35 | 0.45 | Triangular |
Step 2: Run Simulation
Untuk 10,000 iterations:
- Sample random value dari each distribution
- Calculate OOIP dan Reserves
- Store result
Step 3: Analyze Results
From output distribution:
- P90 = 4.2 MMstb
- P50 = 6.8 MMstb
- P10 = 10.5 MMstb
- Mean = 7.1 MMstb
Interpretation
Key insights:
- Range of uncertainty: 4.2 - 10.5 MMstb
- Expected value: 7.1 MMstb (mean)
- Risk assessment: P90 untuk conservative planning
Correlation dan Dependency
Independent vs Dependent Variables
Independent:
- Area dan porosity (usually)
- Thickness dan recovery factor
Dependent (Correlated):
- Porosity dan permeability (positive correlation)
- Water saturation dan porosity (negative correlation)
Handling Correlation
Correlation coefficient (ρ):
- ρ = +1: Perfect positive correlation
- ρ = 0: No correlation
- ρ = -1: Perfect negative correlation
Impact on uncertainty:
- Positive correlation → increases variance
- Negative correlation → decreases variance
Sensitivity Analysis
Tornado Diagram
Identify which parameters have biggest impact on reserves:
- Vary each parameter ±20%
- Calculate impact on reserves
- Rank by magnitude of impact
Typical ranking untuk reserves:
- Recovery factor (highest impact)
- Area
- Net pay thickness
- Porosity
- Water saturation
- Bo (lowest impact)
Spider Plot
Shows how reserves change with each parameter variation.
Practical Application
Case Study: Field Development Decision
Scenario: Evaluating field development dengan uncertainty in reserves.
Data:
- P90 = 15 MMstb
- P50 = 25 MMstb
- P10 = 40 MMstb
- Development cost = $200 MM
- Oil price = $70/bbl
- Operating cost = $15/bbl
Analysis:
P90 Case (Conservative):
- Revenue = 15 × 70 = $1,050 MM
- Opex = 15 × 15 = $225 MM
- Capex = $200 MM
- Net = $625 MM
- NPV@10% ≈ $350 MM
P50 Case (Base):
- Net = $1,175 MM
- NPV@10% ≈ $650 MM
Decision: Even at P90, project is economic → Proceed with development.
Best Practices
- Use appropriate distributions: Lognormal untuk permeability, triangular untuk simple estimates
- Validate with analogs: Compare dengan offset fields
- Consider correlations: Don't assume independence
- Run enough iterations: Minimum 10,000 untuk stable results
- Sensitivity analysis: Understand key drivers
- Document assumptions: Transparency is critical
Common Pitfalls
- Garbage in, garbage out: Bad input distributions → meaningless results
- Ignoring correlations: Can significantly underestimate uncertainty
- Over-confidence: P50 is not guaranteed
- Misuse of mean: Use P50 (median) untuk reserves booking, not mean
Kesimpulan
Statistika adalah essential tool untuk petroleum engineers dalam managing uncertainty. Probabilistic methods memberikan more realistic view of reserves dan support better decision-making. Memahami konsep probability distributions, Monte Carlo simulation, dan sensitivity analysis akan significantly improve quality of reserve estimates dan economic evaluations.